Announcements

 Videos: YouTube / www.rostlab.org

 THANKS:

 Special lectures:

 • 11/xx - Tatyana Goldberg (TBC)
 • 12/15 - Jana Schmidt (TBC)
 • 12/17 - Andrea Schafferhans (TBC)
 • 01/07 Marco De Vivo, IIT Genoa (video)

 No lecture:

 • 11/05 - skip
 • 11/10 - SVV Student representation
 • 12/03 - Dies Academicus TUM
 • 12/22 - no lecture

 LAST lecture: January 14 (followed by 2 x wrap-up sessions)

 Examen: January 28, 2016: 11:30 room to be confirmed

 • Makeup: TBC: Apr 12 & Apr 14, 2016 - lecture time

 CONTACT: Lothar Richter richter@rostlab.org

 © Burkhard Rost
Today: Intro into function

LAST WEEKs
- Intro into lecture

THIS WEEK
- Tuesday: From molecular predictions to individualized medicine
- Introduction to protein function I

NEXT WEEK
- Tobias Hamp: function prediction
I2: Homology-based inference
Homology vs. machine learning
Protein kinases in human

© Kaz Wrzeszczynski: Thesis
Protein function classification

Protein Space:

X=Positive
Y=Negative

- Red dots: Close Homology (Sequence Id. > 60%
 Psi-Blast Eval < 10^{-20})
- Blue dots: Distant Homology (Domain, Motif)
- Orange dots: Machine Learning (NN, SVM)
General challenges for homology-based inference of function
Evolution: speciation

© http://evolution.berkeley.edu/evosite/evo101/
Evolution: speciation

© http://evolution.berkeley.edu/evosite/evo101/

species=?
Evolution: speciation

© http://evolution.berkeley.edu/evosite/evo101/

species=mating
Evolution: speciation

© [Link to Website](http://evolution.berkeley.edu/evosite/evo101/)

happily munching
Evolution: speciation

© http://evolution.berkeley.edu/evosite/evo101/

disaster strikes
Evolution: speciation

© http://evolution.berkeley.edu/evosite/evo101/

populations diverge
Evolution: speciation

rejoined - yet separated
Evolution: speciation

Evolution: speciation

Happy Face Spider *Theridion grallator*
(same species-interbreed)

Carrion/Hooded crow
(same species?)
ADH: Alcohol dehydrogenase

© Wikipedia ADH5 PDBid: 1m6h

Human glutathione-dependent formaldehyde dehydrogenase

ADH: Alcohol dehydrogenase

© Wikipedia

© GO

Homologs have the same ancestor

- ADH1-human
- ADH1-yeast
- ADH1-bacteria
- ADH1-plants
Homologs have the same ancestor.
Homologs have the same ancestor.

- ADH1-human
- ADH1-yeast
- ADH1-bacteria
- ADH1-plants

Common ancestor

Tree hypothetical
Homologs have the same ancestor.
Orthologs are genes separated by speciation.

- ADH1-human
- ADH1-yeast
- ADH1-bacteria
- ADH1-plants

Common ancestor
Tree hypothetical
Homologs have the same ancestor
Orthologs are genes separated by speciation
Paralogs separated AFTER speciation

ADH1-bacteria
ADH1-yeast
ADH1-plants
ADH2-plants

Homologs, Ortholog
Translation of terms to proteins

- homologous proteins: are related
- orthologs have similar function
- paralogs may evolve a different function
Tree uncertain, but story gets even more complicated for proteins:
problem 1: genes/proteins do not “reproduce”
problem 2:
domains decoupled
“The domain problem”

A

B

C

Function 1

Function 1

Function 1
problem 3:
moonlighting
Moonlighting proteins

<table>
<thead>
<tr>
<th>One function</th>
<th>Additional functions</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>PutA proline dehydrogenase</td>
<td>Transcriptional repressor</td>
<td>1, 2</td>
</tr>
<tr>
<td>Phosphoglucone isomerase</td>
<td>Neuroleukin, autocrine motility factor, differentiation and maturation mediator</td>
<td>3, 8</td>
</tr>
<tr>
<td>Thymidine phosphorylase</td>
<td>Platelet-derived endothelial cell growth factor</td>
<td>9</td>
</tr>
<tr>
<td>Neurophilin (VEGF receptor)</td>
<td>Receptor for semaphorin III (nerve axons)</td>
<td>10</td>
</tr>
<tr>
<td>Uracil-DNA glycosylase</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>11</td>
</tr>
<tr>
<td>Aconitase</td>
<td>Iron-responsive-element binding protein (IRE-BP)</td>
<td>12, 15</td>
</tr>
<tr>
<td>Carbinolamine dehydratase</td>
<td>Dimerization cofactor (DeoH)</td>
<td>16</td>
</tr>
<tr>
<td>Escherichia coli thioredoxin</td>
<td>Subunit of T7 DNA polymerase</td>
<td>17</td>
</tr>
<tr>
<td>E. coli aspartate receptor</td>
<td>Maltose-binding-protein receptor</td>
<td>13, 14</td>
</tr>
<tr>
<td>PMS2 mismatch-repair enzyme</td>
<td>Hypermunation of antibody variable chains</td>
<td>24</td>
</tr>
<tr>
<td>Ribosomal proteins</td>
<td>DNA repair, translational regulators, development regulators, etc.</td>
<td>25</td>
</tr>
<tr>
<td>Lens crystallins</td>
<td>Heat-shock proteins, lactate dehydrogenase, argininosuccinate, retinaldehyde dehydrogenase, lyase, enolase, quinone oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase, etc.</td>
<td>26</td>
</tr>
<tr>
<td>CFTR chloride channel</td>
<td>Regulator of other epithelial anion channels</td>
<td>18</td>
</tr>
<tr>
<td>P-glycoprotein (transporter)</td>
<td>Regulator of cell-swelling ion channel</td>
<td>19, 20</td>
</tr>
<tr>
<td>Thrombin protease</td>
<td>Ligand for cell surface receptors</td>
<td>21</td>
</tr>
<tr>
<td>Thymidylate synthase</td>
<td>Translation inhibitor</td>
<td>22</td>
</tr>
<tr>
<td>E. coli birA* biotin synthetase</td>
<td>Bioper operon repressor</td>
<td>23</td>
</tr>
<tr>
<td>Mitochondrial LON protease</td>
<td>Chaperone</td>
<td>27</td>
</tr>
<tr>
<td>Bacterial FtsH chaperone</td>
<td>Metalloprotease</td>
<td></td>
</tr>
<tr>
<td>Band-3 anion exchanger</td>
<td>Regulator of glycolysis</td>
<td></td>
</tr>
</tbody>
</table>

How well does it work?
Homology transfer accurate for very similar proteins

<table>
<thead>
<tr>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyltransferase</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>guanidinoacetate N-methyltransferase</td>
</tr>
</tbody>
</table>
Homology transfer accurate for very similar proteins

<table>
<thead>
<tr>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyltransferase</td>
<td>methyltransferase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>identity</th>
<th>protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>guanidinoacetate N-methyltransferase</td>
</tr>
<tr>
<td>99%</td>
<td>magnesium protoporphyrin IX methyltransferase</td>
</tr>
</tbody>
</table>
Homology transfer accurate for very similar proteins

<table>
<thead>
<tr>
<th></th>
<th>Identity</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>100%</td>
<td>guanidinoacetate N-methyltransferase</td>
</tr>
<tr>
<td>TRUE</td>
<td>99%</td>
<td>magnesium protoporphyrin IX methyltransferase</td>
</tr>
<tr>
<td>TRUE</td>
<td>70%</td>
<td>phosphoribosylglycinamide formyltransferase</td>
</tr>
<tr>
<td>TRUE</td>
<td>66%</td>
<td>inositol 3-methyltransferase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2/3 accuracy</th>
<th>2/4 coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>src_human</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
<tr>
<td>src_chick</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
<tr>
<td>src_avis</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
<tr>
<td>src_aviss</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
<tr>
<td>src_avir</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
<tr>
<td>stk_hydat</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
<tr>
<td>stk_rsvpa</td>
<td>VTLFVAMYD EARTDDLSF</td>
<td>KGERQILI NSSEGNEWAE SLTGGTTQY</td>
</tr>
</tbody>
</table>

© Burkhard Rost
Homology transfer accurate for very similar proteins

<table>
<thead>
<tr>
<th>Identity</th>
<th>Protein Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Guanidinoacetate N-methyltransferase</td>
</tr>
<tr>
<td>99%</td>
<td>Magnesium protoporphyrin IX methyltransferase</td>
</tr>
<tr>
<td>70%</td>
<td>Phosphoribosylglycinamide formyltransferase</td>
</tr>
<tr>
<td>66%</td>
<td>Inositol 3-methyltransferase</td>
</tr>
<tr>
<td>65%</td>
<td>Phosphoribosylglycinamide formyltransferase</td>
</tr>
<tr>
<td>63%</td>
<td>Aspartate carbamoyltransferase</td>
</tr>
<tr>
<td>62%</td>
<td>Glycine amidinotransferase</td>
</tr>
<tr>
<td>61%</td>
<td>Inositol 3-methyltransferase</td>
</tr>
</tbody>
</table>

2/3 accuracy ; 2/4 coverage

3/8 accuracy ; 4/4 coverage
what's better?

66% acc @ 50% cov

or

38% acc @ 100% cov
Specific challenges
(homology-based inference of function):
sub-cellular localization
Rajesh Nair

now: FDA, Washington
Goal: predict sub-cellular localization
Predict sub-cellular localization
Zones

- Midnight Zone
- Twilight Zone
- Save Zone

sequences similar

structures similar
Performance of homology-based inference
Different sequences adopt similar 3D

Sequence identity implies structural similarity!

Don't know region

Percentage sequence identity

Number of residues aligned

Distance from curve = +10

Distance from curve = -10

C Sander & R Schneider 1991 Proteins 9:56-68
B Rost 1999 Prot Engin 12:85-94
Known-localization all-against-all ok?

proteins of known localization (SWISS-PROT)
Databases biased: MUST remove bias!

all proteins of known localization

sequence-unique subset

all proteins of known localization
Annotation transfer: Localization
Annotation transfer: Localization
Homology-based inference depends

Structure

Subcellular localization

R Nair and B Rost (2002) *Protein Science* 11: 2836-47
Homology inference localization

R Nair and B Rost (2002) *Protein Science* 11: 2836-47
Homology inference localization

R Nair and B Rost (2002) *Protein Science* 11: 2836-47
Homology inference localization

R Nair and B Rost (2002) *Protein Science* 11: 2836-47
Same sequence, different tissues
\Rightarrow different function

© Marco Punta & Yanay Ofran

Quick fix? - NO!

Quick fix:
- Establish family-specific similarity cutoff
- Establish a function-specific similarity cutoff

Difficult to realize and not enough!
Homology-based inference: Conservation of enzymatic activity
Detour: conservation of enzymatic activity

☐ How well is enzymatic activity conserved?
☐ Can we predict enzymatic activity by homology?
☐ Can we predict that a protein is an enzyme?
EC: Enzyme Commission number

EC1 oxidoreductases
EC2 transferases
EC3 hydrolases
EC4 lyases
EC5 isomerase
EC6 ligases

EC4.1 carbon-carbon
EC4.2 carbon-oxygen
EC4.3 carbon-nitrogen
EC4.4 carbon-sulfur
EC4.5 phosphorus-oxygen
EC4.99 others

EC4.1.1 carboxy lyases
EC4.1.2 aldehyde lyases
EC4.1.3 oxo-acid lyases
EC4.1.99 other carbon-carbon lyases

4.1.1.1 pyruvate decarboxylase
4.1.1.2 oxolate decarboxylase

Enzyme classification (EC)

(http://www.chem.qmw.ac.uk/iubmb/enzyme)/

<table>
<thead>
<tr>
<th>First figure</th>
<th>Second figure</th>
<th>Third figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. OXIDOREDUCTASES</td>
<td>Substrate is oxidised-regarded as the hydrogen or electron donor</td>
<td>Describes substrate acted on by enzyme</td>
</tr>
<tr>
<td>B. TRANSFERASES</td>
<td>Describes group transferred</td>
<td>Further information on the group transferred</td>
</tr>
<tr>
<td>Transfer of a group from one substrate to another</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. HYDROLASES</td>
<td>Hydrolytic cleavage of bond</td>
<td>Describes type of bond</td>
</tr>
<tr>
<td>D. LYASES</td>
<td>Type of bond</td>
<td></td>
</tr>
<tr>
<td>Cleavage of bonds by elimination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. ISOMERASES</td>
<td>Type of reorganisation</td>
<td></td>
</tr>
<tr>
<td>F. LIGASES</td>
<td>Describes type of bond formed</td>
<td></td>
</tr>
</tbody>
</table>

An enzyme reaction is assigned a four-digit EC number, where the first digit denotes the class of reaction. Note that the meaning of subsequent levels depends upon the primary number, e.g. the substrate acted upon by the enzyme is described at the second level for oxidoreductases, whereas it is described at the third level for hydrolases. Different enzymes clustered together at the third level are given a unique fourth number, and these enzymes may differ in substrate/product specificity or cofactor-dependency, for example. Peptidases (EC 3.4.-.-) have a different classification scheme (Barrett, 1994). Note also that it is a classification of overall enzyme reactions, and not enzymes, and takes no account of the details of the reaction chemistry involved (see caveats below).

Enzyme classification nomenclature

http://www.chem.qmul.ac.uk/iubmb/enzyme/

G.P. Moss, Queen Mary University of London, g.p.moss@qmul.ac.uk

EC 1 Oxidoreductases
EC 2 Transferases
EC 2.1 Transferring one-carbon groups
 EC 2.1.1 Methyltransferases
 EC 2.1.2 Hydroxymethyl-, Formyl- and Related Transferases
 EC 2.1.3 Carboxyl- and Carbamoyltransferases
 EC 2.1.4 Amidinotransferases
 EC 2.1.1.1 nicotinamide N-methyltransferase
 EC 2.1.1.2 guanidinoacetate N-methyltransferase
 EC 2.1.1.3 thetin-homocysteine S-methyltransferase
EC 2.2 Transferring aldehyde or ketonic groups
EC 2.3 Acyltransferases
EC 2.4 Glycosyltransferases
EC 2.5 Transferring alkyl or aryl groups, other than methyl groups
EC 2.6 Transferring nitrogenous groups
EC 2.7 Transferring phosphorus-containing groups
EC 2.8 Transferring sulfur-containing groups
EC 2.9 Transferring selenium-containing groups
EC 3 Hydrolases
EC 4 Lyases
EC 5 Isomerases
EC 6 Ligases

2.x: group transferred
2.x.x: details of group
Similar reaction/different structure

Figure 7. MOLSCRIPT (Kraulis, 1991) diagrams of the homologous enzymes (a) chloramphenicol acetyltransferase (PaXAT), and (b) UDP-N-acetylglucosamine acyltransferase (LpxA). The catalytic histidine residues putatively involved in deprotonation of the substrate hydroxyl are shown in ball-and-stick and circled in blue.
Conservation of function

Devos & Valencia 2000 *Proteins* 41, 98-107
Measuring conservation of enzymatic activity
REAL conservation of EC number

bias:
50% found at >90% right

real:
50% found at <15% right!

sequence identity bad!

B Rost 2002 J Mol Biol 318, 595-608
Conservation of EC number: BLAST

E-value better but no 100% accuracy

B Rost 2002 J Mol Biol 318, 595-608
Conservation in detail

B Rost 2002 J Mol Biol 318, 595-608
Conservation of EC: PSI- vs. pair-BLAST

![Graphs showing conservation of EC using PSI-BLAST and pair-BLAST.](image)

- **PAIR-BLAST**
 - Corresponding percentage sequence identity
 - Number of proteins
 - Distance from threshold (identity/length)

- **PAIR**
 - Corresponding percentage sequence identity
 - Number of proteins
 - log(BLAST E)

- **PSI-BLAST**
 - Corresponding percentage sequence identity
 - Number of proteins
 - Distance from threshold (identity/length)

- **PSI**
 - Corresponding percentage sequence identity
 - Number of proteins
 - log(BLAST E)

Legend
- **+** Number of proteins
- ▲ first EC digit: accuracy
- ○ all EC digits: accuracy
- ▼ first EC digit: coverage
- ● all EC digits: coverage

© Burkhard Rost ROSTLAB. TUM
Statistical scores better when statistics kick in

R Nair & B Rost 2002 *Protein Science* 11, 2836-47
B Rost 2002 *J Mol Biol* 318, 595-608
B Rost 1999 *Prot Engng* 12, 85-94
Homology-based inference: ER/Golgi
Kazimierz O. Wrzeszczynski

Kazimierz O. Wrzeszczynski (now CSHL)
Inferring ER/Golgi localization

Trusted dataset of annotated proteins

ER and Golgi (true positives) 676-312

Other (true negatives) 8417

PSI-BLAST

%Seq.Id. HSSP E-value

© Kaz Wrzeszczynski: Thesis
Homology-based inference

<table>
<thead>
<tr>
<th>HSSP</th>
<th>Predicted</th>
<th>Annotated as Golgi in Swiss-Prot</th>
<th>Other Swiss-Prot annotation</th>
<th>Hypothetical protein</th>
<th>estimated # of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 (98%)</td>
<td>800</td>
<td>565</td>
<td>235</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>16 (95%)</td>
<td>1110</td>
<td>675</td>
<td>435</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>12 (90%)</td>
<td>1358</td>
<td>728</td>
<td>630</td>
<td>99</td>
<td>136</td>
</tr>
<tr>
<td>8 (85%)</td>
<td>1726</td>
<td>812</td>
<td>914</td>
<td>125</td>
<td>259</td>
</tr>
<tr>
<td>7 (78%)</td>
<td>1853</td>
<td>826</td>
<td>1027</td>
<td>134</td>
<td>407</td>
</tr>
</tbody>
</table>

Homology-based inference: Cell cycle control
Kazimierz O. Wrzeszczyński

Kazimierz O. Wrzeszczyński (now CSHL)
Cell Cycle Control and Data Set

Numbers of Cell Cycle Control Proteins Found in SWISS-PROT

<table>
<thead>
<tr>
<th>Species</th>
<th>Cell Cycle Control</th>
<th>G1/S</th>
<th>G2/M</th>
<th>M Phase</th>
<th>S Phase</th>
<th>Other</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eukaryotes</td>
<td>582</td>
<td>135</td>
<td>86</td>
<td>66</td>
<td>156</td>
<td>229</td>
<td>90</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>99</td>
<td>28</td>
<td>11</td>
<td>23</td>
<td>41</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>68</td>
<td>25</td>
<td>8</td>
<td>10</td>
<td>30</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>87</td>
<td>20</td>
<td>11</td>
<td>5</td>
<td>19</td>
<td>46</td>
<td>14</td>
</tr>
</tbody>
</table>
Thresholds for cell cycle annotation

True Positive: 582 Cell Cycle Control Proteins
119 Sequence Unique

True Negative: 15,192 w/ No Cell Cycle Annotation

Seq id. = 53: Accu. 27% - Cov. 38%
HSSP D = 5: Accu. 70% - Cov. 58%
E-value = 10^{-8}: Accu. 64% - Cov. 60%
Cell cycle vs. EC class inference

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Cell Cycle</th>
<th>1st EC level l.x.x.x</th>
<th>4th EC level x.x.x.IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-value</td>
<td>Accuracy</td>
<td>64%</td>
<td>98%</td>
</tr>
<tr>
<td>1×10^{-8}</td>
<td>Coverage</td>
<td>60%</td>
<td>58%</td>
</tr>
<tr>
<td>E-value</td>
<td>Accuracy</td>
<td>29%</td>
<td>95%</td>
</tr>
<tr>
<td>1×10^{-3}</td>
<td>Coverage</td>
<td>81%</td>
<td>62%</td>
</tr>
<tr>
<td>HSSP</td>
<td>Accuracy</td>
<td>70%</td>
<td>99%</td>
</tr>
<tr>
<td>D= 5</td>
<td>Coverage</td>
<td>58%</td>
<td>25%</td>
</tr>
<tr>
<td>HSSP</td>
<td>Accuracy</td>
<td>25%</td>
<td>90%</td>
</tr>
<tr>
<td>D= -5</td>
<td>Coverage</td>
<td>81%</td>
<td>60%</td>
</tr>
</tbody>
</table>

EC - Enzyme Classification:
- EC 2.x.x.x Transferase
- EC 2.7.x.x Transferring phosphorus-containing groups
- EC 2.7.11.x Protein-serine/threonine kinases
- EC 2.7.11.22 Cyclin-dependent kinase
Discover new cell cycle control proteins

<table>
<thead>
<tr>
<th>Proteome</th>
<th>Known cell cycle control proteins</th>
<th>Predicted cell cycle control proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D=0</td>
<td>D=15</td>
</tr>
<tr>
<td></td>
<td>(55%)</td>
<td>(65%)</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>99</td>
<td>3073</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>68</td>
<td>3162</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>15</td>
<td>970</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>10</td>
<td>1005</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>5</td>
<td>1888</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>87</td>
<td>513</td>
</tr>
<tr>
<td>Sum</td>
<td>284</td>
<td>10611</td>
</tr>
</tbody>
</table>

1 Distance from HSSP-Threshold chosen as seen in Fig. 2 for various levels of percent accuracy using the PSI-BLAST curve. Levels of accuracy are estimated according to Fig. 2, e.g. at a threshold of D=40 more than 95% of the proteins for which we infer the involvement in cell cycle control by homology are supposedly correctly inferred.

2 The number of previously known annotated cell cycle control proteins represented in each specific proteome as used in our trusted data set is given for comparison.
CellCycleDB (Database of Cell Cycle Control Proteins in Eukaryotes)

It is

CellCycleDB Catalogues proteins involved in the Cell Cycle Control Process through homology transfer from experimental annotations.

It does

CellCycleDB allows the user to submit a protein sequence to determine estimates for involvement in the cell cycle process or search CellCycleDB for predicted cell cycle proteins among six eukaryotic proteomes. CellCycleDB is currently a first detailed analysis through homology assignment for identifying proteins functioning in the cell cycle process focusing on cell cycle control. Single sequence queries are evaluated against a trusted annotated data set of experimentally identified cell cycle control proteins. An overall accuracy estimate for involvement in the cell cycle process based on HSSP-distance threshold values is presented for any specific query. CellCycleDB provides various accuracy levels for cell cycle function assignment of all proteins among six eukaryotic proteomes.

You can

- Use CellCycleDB online (currently: single protein sequence submissions only)
- Search CellCycleDB using SRS: CellCycleDB
- download the CellCycleDB
- CellCycleDB Content Summary: Content Summary Tables

From Here

Who are we?

Contact

Email: kaz@cubic.biocolumbia.edu
Tel: +1-212-305-4018 (Kazimierz O. Wrzeszczynski)
Fax: +1-212-305-7932
Homology-based inference: how much of human?
Homology transfer accurate for very similar proteins

<table>
<thead>
<tr>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>methyltransferase</td>
<td></td>
</tr>
<tr>
<td>identity</td>
<td>protein</td>
</tr>
<tr>
<td>100%</td>
<td>guanidinoacetate N-methyltransferase</td>
</tr>
<tr>
<td>99%</td>
<td>magnesium protoporphyrin IX methyltransferase</td>
</tr>
<tr>
<td>70%</td>
<td>phosphoribosylglycinamide formyltransferase</td>
</tr>
<tr>
<td>65%</td>
<td>inositol 3-methyltransferase</td>
</tr>
<tr>
<td>65%</td>
<td>phosphoribosylglycinamide formyltransferase</td>
</tr>
<tr>
<td>63%</td>
<td>aspartate carbamoyltransferase</td>
</tr>
<tr>
<td>62%</td>
<td>glycine amidinotransferase</td>
</tr>
<tr>
<td>61%</td>
<td>inositol 3-methyltransferase</td>
</tr>
</tbody>
</table>

2/3 accuracy ; 2/4 coverage

<table>
<thead>
<tr>
<th>3/8 accuracy ; 4/4 coverage</th>
</tr>
</thead>
</table>

© Burkhard Rost
ROSTLAB.

83/89
Homology transfer accurate for very similar proteins
Some problems of homology transfer

- not all annotations as informative as “methyltransferase”

ID 1433_TRIHA STANDARD; PRT; 262 AA.
DE 14-3-3 PROTEIN HOMOLOG (TH1433).
CC -!- DEVELOPMENTAL STAGE: HIGHEST EXPRESSION DURING THE ACTIVE GROWTH PERIOD 10-12 HOURS AFTER GERMINATION.
CC -!- SIMILARITY: BELONGS TO THE 14-3-3 FAMILY.

- 70% multi-domain proteins

Schlessinger unpublished

Less than 25% have some annotation coverage of homology transfer

< 10-25%

we clearly need something more!

B Rost, Nair, Liu, Wrzeszczynski & Ofran (2003) *CMLS* 60: 2637-50
A. **Paralogy problem**

\[\text{query} \rightarrow \text{template} \]

Template is a paralog, more likely to have diverged functionally

B. **Moonlighting problem**

\[\text{query} \rightarrow \text{template} \]

Template may have more than one function

C. **Multi-domain proteins problem**

\[\text{query} \rightarrow \text{template} \]

Template annotation may be based on a non-matching domain

D. **Database mis-annotations problem**

\[\text{query} \rightarrow \text{template} \]

Template is mis-annotated

\[\text{e.g. by homology with a multi-domain protein (see C)} \]
Evolutionary profile capture information
Conclusions today

- Function introduction
 - Molecular biology knows it all?
 - Can we compute life?
 - Protein function: terminology
 - Homology-based inference (examples)
 - Machine learning vs. homology
 - Challenges for homology-based inference
 - Inferring enzymatic activity
 - Inferring ER/Golgi
 - Inferring Cell-cycle control

- NEXT
 - Motif-based inference