title: Intro protein structure: 3d comparison
short title: pp1_intro_3d_compare
lecture: Protein Prediction 1 - Protein structure for Computational Biologist - TUM Summer 2015
Videos: YouTube / www.rostlab.org
THANKS:
Tim Karl + Carlo Di Domenico
carlo.de-domenico@tum.de

Special lectures:
• TBA

No lecture:
• 05/12 Student assembly (SVV)
• 05/14 Ascension day
• 05/26 Whitsun holiday
• 06/04 Corpus Christi

LAST lecture: July 7
Examen: July 9

CONTACT: Inga Weise assistant@rostlab.org
TOC today

☐ LAST lectures: Protein introduction
 • amino acids
 • protein structure
 • bonds & energies

☐ THIS lecture (thursday)
 • structure comparisons

☐ NEXT WEEK (tuesday/thursday=no lecture)
 • alignments
Protein Prediction - Part 1: Structure

1 Introduction (contd.)
More about domains
Guessing domains from sequence

protein A
protein B
protein C
protein D
protein E
protein F

domain 1 domain 2
Domains
Most proteins multi-domain
Most proteins multi-domain

Single-domain proteins:
61% in PDB
28% in 62 proteomes
Most domains have ~100 residues

Liu, Hegyi, Acton, Montelione & Rost 2003 Proteins 56:188-200
Liu & Rost 2004 Proteins 55:678-686
Most domains have ~100 residues

Average domain length
• in proteins ≥ 2 domains:
 ~100 residues
• in proteins with 1 domain:
 1.7-3 times longer

Liu, Hegyi, Acton, Montelione & Rost 2003 Proteins 56:188-200
Liu & Rost 2004 Proteins 55:678-686
Kingdoms similar in length

Kingdoms similar in amino acids usage

short insert: CHOP - domain guessing
How to identify domains?
Proteins have domains
How to identify domains from sequence?
CHOP proteins into structural domains

CUT 1: 3D domains
CHOP proteins into structural domains

CUT 1:
3D domains

CUT 2:
Pfam regions
CHOP proteins into structural domains

CUT 1: 3D domains

CUT 2: Pfam regions

CUT 3: SWISS-PROT

J Liu & Rost 2004 Proteins 55:678-686
CHOP proteins into structural domains

CUT 1: 3D domains

CUT 2: Pfam regions

CUT 3: SWISS-PROT

Final

5 domains “today”
CHOP proteins into structural domains

CUT 1: 3D domains

CUT 2: Pfam regions

CUT 3: SWISS-PROT

Final 5 domains “today”

J Liu & Rost 2004 Proteins 55:678-686
Notation: protein structure 1D, 2D, 3D

Notation: protein structure 3D, 2D, 1D
Notation: protein structure 1D, 2D, 3D
Notation: protein structure 1D, 2D, 3D

<table>
<thead>
<tr>
<th>Notation</th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P PP P</td>
<td>128</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Q QQQY</td>
<td>175</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>I FPQVI</td>
<td>70</td>
<td>E 60</td>
<td></td>
</tr>
<tr>
<td>T SSIVR</td>
<td>77</td>
<td>E 69</td>
<td></td>
</tr>
<tr>
<td>L LLSTL</td>
<td>120</td>
<td>E 14</td>
<td></td>
</tr>
<tr>
<td>W WWQED</td>
<td>238</td>
<td>E 81</td>
<td></td>
</tr>
<tr>
<td>Q RKQAK</td>
<td>169</td>
<td>E 97</td>
<td></td>
</tr>
<tr>
<td>R RRRPQ</td>
<td>200</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>P PPPPP</td>
<td>24</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>L VVTKF</td>
<td>E 71</td>
<td>E 59</td>
<td></td>
</tr>
<tr>
<td>V VLLII</td>
<td>E 14</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>T TTKEK</td>
<td>74</td>
<td>E 69</td>
<td></td>
</tr>
<tr>
<td>I AALIV</td>
<td>E 0</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>K HYKKF</td>
<td>E 90</td>
<td>E 73</td>
<td></td>
</tr>
<tr>
<td>I IILVI</td>
<td>4</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>G EENGG</td>
<td>46</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>G GGTTG</td>
<td>62</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Q QQKRR</td>
<td>68</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>L PPLNW</td>
<td>E 118</td>
<td>E 59</td>
<td></td>
</tr>
<tr>
<td>K VVFKV</td>
<td>E 31</td>
<td>E 73</td>
<td></td>
</tr>
<tr>
<td>E EESK</td>
<td>E 124</td>
<td>E 95</td>
<td></td>
</tr>
<tr>
<td>A VVGLG</td>
<td>E 1</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>L LLILL</td>
<td>E 29</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>L LLLVV</td>
<td>E 24</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>D DDDDD</td>
<td>49</td>
<td>E 58</td>
<td></td>
</tr>
<tr>
<td>T TTTTT</td>
<td>72</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>G GGGGG</td>
<td>62</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>A AAAAA</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D DDDDD</td>
<td>102</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>D DDAKE</td>
<td>69</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>T SSSTTV</td>
<td>E 1</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>V IIVIV</td>
<td>E 14</td>
<td>E 0</td>
<td></td>
</tr>
<tr>
<td>L VVIVL</td>
<td>E 0</td>
<td>E 0</td>
<td></td>
</tr>
</tbody>
</table>
3D classifications
Blue and red similar?

Doyle et al. (1998) Science 280:69-77 - The structure of the potassium channel: molecular basis of K+ conduction and selectivity
Similarity now clearer?

Doyle et al. (1998) Science 280:69-77 - The structure of the potassium channel: molecular basis of K+ conduction and selectivity
3D comparisons: how to objects?
Matching shapes

How to match?
How to match?
Differences for corresponding points

Difference

\[= d_1 + d_2 + d_3 \ldots + d_8 \]

\[= |r_{1a} - r_{1b}| + \ldots + |r_{8a} - r_{8b}| \]

RMSD (root mean square deviation)

\[= \sqrt{\sum_i (r_i^A - r_i^B)^2} \]
Differences for corresponding points

\[RMSD(A, B) = \sqrt{\sum_i (r_i^A - r_i^B)^2} \]
Actual algorithm inversed

1st: find corresponding points
2nd: superimpose

\[
RMSD(A, B) = \sqrt{\sum_i (r_i^A - r_i^B)^2}
\]
fit now?
Scaling easy for simple shapes

\[x^2 + y^2 = r^2 \]
Proteins: points are defined -> no scaling

Global vs. local comparisons
Global vs. local comparisons
Global vs. local comparisons

Global solution 1:

Global solution 2:
cut into “units”
cut into “units”
trouble: where to stop?

valid “unit” for comparison?
How to decide what is a valid unit?
Decision upon validity

valid “unit” for comparison?
Valid or not?

Scientifically significant: some expert says
Valid or not?

- **Scientifically significant:** some expert says

- **Statistically significant:** background

![Graph showing distribution of scores with 'background' and 'signal' areas.]
Cut, match, compare by RMSD

\[RMSD(A, B) = \sqrt{\sum_{i} (r_i^A - r_i^B)^2} \]
Only Cartesian RMSD comparison?

\[RMSD(A, B) = \sqrt{\sum_i (r_i^A - r_i^B)^2} \]
2D: difference matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison 2D: differences of differences

Total of 8 x 8 differences
3D comparisons: how to proteins?
Structure alignment

Slides taken from Patrice Koehl, UC Davis

Patrice Koehl
Structure alignment: two steps

1. Identify equivalent positions (residues that match in 3D)
2. Find superposition independent of domain movements

© Patrice Koehl, UC Davis
Root mean square displacement (rmsd)

\[
\text{rmsd}(A,B) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d_i^2}
\]

- Step 1: find corresponding points in proteins A and B
- \(d(i)\) are the distances between all corresponding points (typic: C\text{alpha}, all atoms)
RMSD is not a metric

\[\text{cRMSD} = 2.8 \, \text{Å} = 0.28 \, \text{nm} \]

\[\text{cRMSD} = 2.85 \, \text{Å} = 0.285 \, \text{nm} \]

A similar B
B similar C
NOT implying:
A similar C
SSAP
3D alignment
Taylor & Orengo
Structural alignment: SSAP

William R. Taylor & Christine A. Orengo

Willy Taylor @CASP7

Christine Orengo @ISCB-Africa

SSAP: Sequential Structure Alignment Program

© Erik Bongcam-Rudloff
Structural alignment: **SSAP**

William R. Taylor & Christine A. Orengo

Willy Taylor @CASP7

Christine Orengo @ISCB-Africa

©Erik Bongcam-Rudloff

SSAP: Sequential Structure Alignment Program

WR Taylor & CA Orengo (1989) Protein structure alignment JMB 208:1-22

IDEA: use C-beta distance matrix and apply double dynamic programming
SSAP concept

WR Taylor & CA Orengo (1989)
Protein structure alignment
JMB 208:1-22
Structural alignment: SSAP

Optimize:

\[S_{ik} = \sum_{m=-n}^{m=+n} \frac{a}{|d_{i,i+m}^A - d_{k,k+m}^B| + b} \]

Problem: loss of information about direction

WR Taylor & CA Orengo (1989)
Protein structure alignment
JMB 208:1-22
Structural alignment: SSAP

Replace distances by interatomic vectors (V)

Optimize:

\[S_{ik} = \frac{a}{|V_{ij}^A - V_{kl}^B| + b} \]

WR Taylor & CA Orengo (1989)
Protein structure alignment
JMB 208:1-22
Include sequence information (D(xy): Dayhoff)

Optimize:

\[S_{ik} = \frac{wD_{RiRk} + a}{| V_{ij}^A - V_{kl}^B | + b} \]

WR Taylor & CA Orengo (1989)
Protein structure alignment
JMB 208:1-22
DALI

3D alignment

Holm & Sander
Structural alignment: DALI

Liisa Holm & Chris Sander

Liisa Holm
Univ of Helsinki
Finland

Chris Sander
SKCC New York

L Holm & C Sander (1993) Protein structure comparison by alignment of distant matrices.
JMB 233:123-38
Chris Sander

- Sloan Kettering Cancer Center, NYC
- Papers:
 - >770 papers (May 2011)
 - 1 >6,000 citations (May 2011)
 - 6 >1,000 citations (May 2011)
 - 87 over 100
 - H-index 92 (ISI May 2011)
- ISCB Fellow
Structural alignment: DALI

Liisa Holm & Chris Sander

Liisa Holm
Univ of Helsinki
Finland

Chris Sander
SKCC New York

L Holm & C Sander (1993) Protein structure comparison by alignment of distant matrices.
JMB 233:123-38
Structural alignment: DALI

- Distance matrix Alignment
- Algorithm: Monte Carlo on all-against-all for hexapeptides (5)
Vorolign
3D alignment
Birzele & Zimmer
Structural alignment: VOROLIGN

Fabian Birzele, Ralf Zimmer et al.

© Burkhard Rost (TUM Munich)
Structural alignment: VOROLIGN

Dynamic programming on Voronoi environments

F Birzele, JE Gewehr, G Csaba & R Zimmer (2006) Bioinformatics 23:e205-11: Fig. 2
3D comparisons: others
2 forms of calcium-bound Calmodulin

Two forms of calcium-bound Calmodulin:

Ligand free

Complexed with trifluoperazine

Global alignment:
RMSD = 15 Å / 143 residues

Local alignment:
RMSD = 0.9 Å / 62 residues

Structure alignment methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSAP</td>
<td>WR Taylor & CA Orengo 1989 JMB 208:1-22</td>
</tr>
<tr>
<td>DALI</td>
<td>L Holm & C Sander 1993 JMB 233:123-38</td>
</tr>
<tr>
<td>CE</td>
<td>IN Shindyalov & P Bourne 1998 Prot Engng 1:739-47</td>
</tr>
<tr>
<td>SKAN</td>
<td>A Yan, D Petrey & B Honig, unpublished</td>
</tr>
<tr>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of structure alignments

Rachel Kolodny, Patrice Koehl, Michael Levitt

Rachel Kolodny
Univ of Haifa

Patrice Koehl
UC Davis

Michael Levitt
Stanford Univ

Comprehensive Evaluation of Protein Structure Alignment Methods: Scoring by Geometric Measures
JMB 346:1173-88
How to assess 3D comparisons?
standard-of-truth?
Comparison of structure alignments

R Kolodny, P Koehl & M Levitt (2004) JMB 346:1173-88 (Fig. 1A)

dashed lines: original method
solid lines: SAS measure
Comparison of structure alignments

Best-of-All

JMB 346:1173-88
(Fig. 1A)

dashed lines: original method
solid lines: SAS measure
3D comparisons: protein space and databases
Structural universe

B Rost 1998 *Structure* 6:259-263
Evolution of pieces

© Andrei Lupas MPI Tuebingen
Structure evolves without leaps?

Fig. 1: NV Grishin 2001 NAR 29:638-43

© Nick V Grishin HHMI + Univ Dallas
Structural universe: no islands, really
3D classifications: goals

- Similar 3D -> Similar function
- Learn from 3D about function
- Learn about evolution

classify
3D modules

Multiple 3D alignment identifies consensus secondary structure

© Christine Orengo
Fold of a protein

- some structures more often observed than others
- limited number of shapes?
- fold remains an assumption (that increasingly seems to be proven inappropriate)
Protein structure comparisons

All-alpha

All-beta

AlphaBeta

3sdh

1bww

1xne
How to recognize the similarity?
3D classification databases

- SCOP
 http://scop.mrc-lmb.cam.ac.uk/scop/
 [A Murzin et al. (1995) JMB 247, 536-540]

- CATH
 http://www.cathdb.info/

- COPS - QSCOP - TopMatch
 http://cops.services.came.sbg.ac.at
 [SJ Suhrer et al. (2009) NAR 37, W539-W44.]
Classify protein structure: SCOP
Alexei Murzin

- Cambridge University, England
- CASP assessor
- ~90 publications
- 1 with over 3,000 quotes
- 13 with over 100 quotes (ISI 2011/05)
- H-index: 30 (ISI 2011/05)
3D classification databases

- **SCOP**
 http://scop.mrc-lmb.cam.ac.uk/scop/
 [Murzin et al. J. Mol. Biol. 247, 536-540]

- hierarchy
Protein structure comparisons

All-alpha
3sdh

All-beta
1bww

AlphaBeta
1xne
SCOP hierarchy

Example

{All-alpha} a. class

Structure similarity increases
SCOP classes

- alpha
- beta
- alpha and beta (a/b – interspersed)
- alpha plus beta (a+b – segregated)
- multidomain proteins
- membrane and cell-surface proteins
- small proteins
- coiled coil proteins
- low-resolution protein structures
- peptides
- designed proteins
SCOP class

CLASS = alpha and beta (a/b)

NAD(P)-binding Rossmann-fold domains 1sw0-TIM

1sw0-TIM beta/alpha barrel
Example

{All-alpha}

a.

{Globin-like}

a.1

| class

| fold

Structure similarity increases
SCOP fold definition

- same major secondary structures
 - in the same arrangement
 - with the same topological connections

- peripheral elements may differ
 - up to 50% peripheral
 - Turns and secondary structure elements

- evolutionary relationship unclear
SCOP fold

CLASS = alpha and beta (a/b)
FOLD = TIM beta/alpha-barrel
Structural universe: no islands, really

B Rost 1998 *Structure* 6:259-263
SCOP hierarchy

Example

{All-alpha}

{Globin-like}

{alpha-helical ferrodoxin}

Structure similarity increases

\[a. \quad \text{class} \]

\[a.1 \quad \text{fold} \]

\[a.1.2 \quad \text{superfamily} \]
probable common evolutionary origin

low similarities, but

• share the same fold
• have similar functions
SCOP hierarchy

TRIOSEPHOSPHATE ISOMERASE (1swo)

PHOSPHATE ALDOLASE (1p1x)

QUINOLINIC ACID PHOSPHORIBOSYLTRANSFERASE (1qap)
SCOP hierarchy

Example

\{\text{Alpha and beta a/b}\}
\{\text{TIM beta/alpha-barrel}\}
\{\text{Triosephosphate isomerase}\}

\text{c.1.1.1 \textit{superfamily}}

\text{c.1.1 \textit{fold}}

\text{c \textit{class}}

\text{Structure similarity increases}

\text{c.1.1.1.1 \textit{family}}

(sequence based)
SCOP family definition

- clearly evolutionary relation
- Sequence identity often >30%, but not necessarily, e.g. globins: < 15% sequence identity for some members
3D classification databases

SCOP
http://scop.mrc-lmb.cam.ac.uk/scop/
[Murzin et al. J. Mol. Biol. 247, 536-540]
Classify protein structure: CATH
3D classification databases

- **SCOP**

 http://scop.mrc-lmb.cam.ac.uk/scop/

 [Murzin et al. J. Mol. Biol. 247, 536-540]

- **CATH**

 http://www.cathdb.info/

Christine A. Orengo

- UCL, England
- CASP assessor
- over 120 publications
- 1 with over 1,500 quotes
- 16 with over 100 quotes
- H-index >40 (ISI 2011/05)

- SSAP (with Willy Taylor)
- CATH

Christine Orengo
@ISCB-Africa
Dame Janet M. Thornton

- Director
- **EBI** (European Bioinformatics Institute, Hinxton, Cambridgeshire, England)
- BS Physics (Univ Nottingham), MS Biophysics King’s College London, PhD Biophysics UCL
- Amongst Top 100 scientists in UK
- ~400 publications
- 1 with over 11,000 quotes
- 7 with over 1,000 quotes
- 81 with over 100 quotes
- H-index >88 (ISI 2011/05)
Universe of protein structures

Christine Orengo (Structures, 1997, 5, 1093-1108)

Christine Orengo et al. 1997 Structures 5 1093-1108
CATH

- Class
- Architecture
- Topology
- Homology
Class:
mostly alpha, mostly beta, mixed alpha/beta, few regular secondary structure

All-alpha

All-beta

AlphaBeta

3sdh

1bww

1xn
Class: mostly alpha, mostly beta, mixed alpha/beta, few regular secondary structure

Architecture: classification according to overall shape, ignoring connectivity

Topology: fold groups = shape & connectivity

Homology: evolutionarily related superfamily
<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>folds</td>
<td>1,282</td>
</tr>
<tr>
<td>superfamilies</td>
<td>2,549</td>
</tr>
<tr>
<td>sequence families</td>
<td>11,330</td>
</tr>
<tr>
<td>domains</td>
<td>24,232</td>
</tr>
</tbody>
</table>
CATH: steps involved

1. Find domain

Multiple 3D alignment identifies consensus secondary structure

© Christine Orengo

© Burkhard Rost (TUM Munich)
CATH: steps involved

Find domains

- **ab initio**: consensus of three methods:
 - DETECTIVE:
 - hydrophobic interior
 - PUU:
 - likely separation motion
 - DOMAK:
 - count internal and external contacts
- Problem: only 20% consistent!
- **Based on prior knowledge**: CATHEDRAL
 - GT: secondary structure matching
 - DDP: structural alignment

Redfern, O.C. et al. (2007)
CATH: steps involved

- Find domain
- From domain to superfamily

PDB id: 1gcq
(SH3 domains)

PDB id: 1gcqA0
(SH3 domain)

© CATH tutorial (www.cathdb.info)
CATH: steps involved

PDB id: 1gcqA0
(SH3 domain)

http://www.cathdb.info/domain/1gcqA0

© CATH tutorial (www.cathdb.info)
CATH: Architecture: Roll

CATH Architecture Roll
(1nh2D02)

http://www.cathdb.info/1gcqA00

© CATH tutorial (www.cathdb.info)
CATH vs SCOP

At 80% residue domain overlap:
70% of proteins in PDB have similar domains

Table 4: Detailed mappings of domain pairs in percent from SCOP onto CATH

<table>
<thead>
<tr>
<th></th>
<th>outer</th>
<th>class</th>
<th>fold</th>
<th>superfamily</th>
<th>family</th>
</tr>
</thead>
<tbody>
<tr>
<td>outer</td>
<td>79.38%</td>
<td>8.31%</td>
<td>0.99%</td>
<td>0.40%</td>
<td>0.03%</td>
</tr>
<tr>
<td>class</td>
<td>18.16%</td>
<td>56.15%</td>
<td>2.55%</td>
<td>1.88%</td>
<td>0.87%</td>
</tr>
<tr>
<td>arch</td>
<td>2.42%</td>
<td>24.90%</td>
<td>2.80%</td>
<td>1.27%</td>
<td>0.09%</td>
</tr>
<tr>
<td>top</td>
<td>0.04%</td>
<td>10.50%</td>
<td>81.99%</td>
<td>4.44%</td>
<td>0.66%</td>
</tr>
<tr>
<td>hom</td>
<td>0.002%</td>
<td>0.14%</td>
<td>11.66%</td>
<td>92.01%</td>
<td>98.34%</td>
</tr>
</tbody>
</table>

CATH: 50 structures - 1 superfamily

superfamily 3.40.640.10

Type I PLP-dependent aspartate aminotransferase-like (Major domain)

© CATH - Christine Orengo
Remaining families (new BIG)

BIG families (currently Pfam)

Structural families
(i.e. one or more solved structures CATH/SCOP)
3D classification databases

- **SCOP**
 http://scop.mrc-lmb.cam.ac.uk/scop/
 [Murzin et al. J. Mol. Biol. 247, 536-540]

- **CATH**
 http://www.cathdb.info/
Classify protein structure: COPS/QSCOP/TopMatch
Manfred J. Sippl

- CAME, Univ. Salzburg
- CASP assessor
- over 54 publications
- 1 with over 800 quotes
- 10 with over 100 quotes
- H-index >27 (ISI 2011/05)

“Sippl” potentials of pairwise energies
("Knowledge-based potentials")
COPS hierarchy

- COPS = Classification Of Protein Structures
- Based on quantified structural comparison
- 2007: additional info for SCOP domains: qSCOP
- 2009: workbench based on PDB chains: TopSearch
 http://topsearch.services.came.sbg.ac.at/

COPS metric

Axioms / Definitions:

\[S_{a,a} = L_a \]
\[S_{a,b} \geq 0 \]
\[S_{a,b} = S_{b,a} \]
\[S_{b,c} \geq S_{a,b} + S_{a,c} - L_a \]
\[D_{a,b} = L_a + L_b - 2S_{a,b} \]

- Alignment method not so important!
 for COPS: TopMatch
- Metric can reveal alignment problems
 (e.g. via triangle inequality)
PDB updates 2008/08/19-2009/04/14

novelty:

SJ Suhrer et al. (2009) NAR 37:W539-W544
PDB diversity in light of COPS

SJ Suhrer et al. (2009) NAR 37:W539-W544
COPS domain parsing

Apaf-1
PDB id 1z6t

COPS c1z6tA1 (CARD domain) - c2a5yB1

c1z6tA2 (α/β domain) - c2a5yB2

c1z6tA3 (helical domain) - c2a5yB3

c1z6tA4 (winged-helix domain) - c2a5yB4

SJ Suhrer et al. (2009) NAR 37:W539-W544
COPS domain parsing

PDB id
1z6t-A
with 2a5y-B

SJ Suhrer et al. (2009) NAR 37:W539-W544
COPS <-> TopSearch

- No domain decomposition
- But:
 - Complete structure comparisons
 - Biological units
 - New metric

3D classification databases

- **SCOP**
 http://scop.mrc-lmb.cam.ac.uk/scop/
 [A Murzin et al. (1995) JMB 247, 536-540]

- **CATH**
 http://www.cathdb.info/

- **COPS**
 http://cops.services.came.sbg.ac.at
 [SJ Suhrer et al. (2009) NAR 37, W539-W44.]
3D classification databases

- SCOP
 http://scop.mrc-lmb.cam.ac.uk/scop/
 A Murzin et al. 1995 JMB:247, 536-540

- CATH
 http://www.cathdb.info/
 AL Cuff et al. 2009 NAR 37:D310-314;
 CA Orengo et al. 1997 Structure 15:1093-1108

- COPS
 http://cops.services.came.sbg.ac.at
 SJ Suhrer et al. 2009 NAR 37:W539-W44