General information

- Our course homepage, containing lecture slides, announcements, group lists, etc.: http://rostlab.org/cms/teaching/teaching-overview/pp-ss-13/

- Grading („Schein“):
 - 60% **Exercise** (programming),
 - 40% **Final exam** (lecture/exercise content)

- Please work on your project from the student computers in room 01.08.021. There are ten of them: i12k-biolab01 through i12k-biolab10

- You can access them also remotely using **ssh**. For example: `ssh ppigroup1@i12k-biolab01.informatik.tu-muenchen.de`

- At every meeting, each group has to give a maximum 5 minutes presentation on its current progress

- Each milestone is discussed in detail in the exercise – refer to the corresponding slides for more information.

Project:

During this semester you will implement a novel method for the prediction of alpha-helical transmembrane proteins. This exercise sheet shall provide a rough guidance for a successful completion of your project. The attendance of the exercises (at least one member per group) and understanding of the lecture content are indispensable.

Data Set:

/mnt/opt/data/pp1_13_exercise/dataset/

Arff file containing amino acid – based features:

/mnt/opt/data/pp1_13_exercise/tmps.arff

Weka Workbench. For implementation of your method please **only** use this version.

/mnt/opt/data/pp1_13_exercise/weka-3-6-9/
Meetings and Milestones:

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Group A presentations</th>
<th>Group B presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.05.</td>
<td>23.05</td>
</tr>
<tr>
<td>2</td>
<td>06.06.</td>
<td>13.06.</td>
</tr>
<tr>
<td>3</td>
<td>20.06.</td>
<td>27.06.</td>
</tr>
<tr>
<td>4</td>
<td>04.07</td>
<td>04.07</td>
</tr>
</tbody>
</table>

Milestone 1: Prepare for Machine Learning
- Understand the data – the tmps.arff holds all the information
- Partition the data in three folds for training, cross-training and evaluation
- Select the minimal set of Features that provides good performance
- You must use at least all ‘pssm’ and ‘chemprop_hyd’ features
- Select a window length (range 17-25 residues) that leads to a (near) optimal solution
- Optimize the parameters of your model
- Cross-train a good model (and evaluate on test sets – see Hints)

Milestone 2: Prepare an executable.
- Provide a standalone command line executable
- Make sure its executable on the student machines
- For any protein sequence, your method should take the corresponding ‘.arff’ file as input and for each residue provide the (hopefully correct) class assignment
- Provide a RESTful interface for your method

Milestone 3: Evaluate your methods
- Each group will evaluate the method of another group
- We will provide an independent data set
- Provide figures that compare your own method to that of the other group
- This Milestone will be different for Comput. Biol. Track

Milestone 4: Final Presentation
- Every group presents its method to the audience
- Presentations should be no longer than 5 minutes (max 3 slides)
- It should cover the feature set, the algorithm and the results of your evaluation
- Until July 30th: Prepare and submit your final report as Bioinformatics Application

Note. It is obligatory to stick to the guidelines and use the Word or Latex templates given in: Oxford Journals - Bioinformatics

Happy coding!
Hints:

Evaluation:
For all evaluation purposes, you should use the following measures:

- the overall performance Q_2:

\[Q_2 = 100 \frac{TP + TN}{TP + FP + TN + FN} = \frac{\text{correct predictions}}{\text{total predictions}} \]

- Accuracy positive - $\text{Acc}(TM)$:

\[\text{Acc}(TM) = 100 \frac{TP}{TP + FP} \]

- Coverage positive - $\text{Cov}(TM)$:

\[\text{Cov}(TM) = 100 \frac{TP}{TP + FN} \]

Note:
TP (True positives): Residues correctly predicted to be in TM regions.
FP (False positives): Residues predicted but not observed in TM regions.
TN (True negatives): Residues correctly predicted not to be in TM regions.
FN (False negatives): Residues observed but not predicted in TM regions.

- Accuracy negative – $\text{Acc}(\text{non-TM})$ and Coverage negative – $\text{Cov}(\text{non-TM})$ are calculated by exchanging TP by TN and FP by FN.

A complete model evaluation consists of 5 values: Q_2, $\text{Acc}(TM)$,$\text{Cov}(TM)$, $\text{Acc}(\text{non-TM})$ and $\text{Cov}(\text{non-TM})$;
Use all five values when visualizing your method performance (plots).