Protein Prediction I Exercise
Develop a Transmembrane Predictor

• Each group:
 • Train a machine learning device
 • Predict which residues are in transmembrane region
 • Optimize and evaluate your tool

• Possibly: combine all of your tools into one big predictor (e.g. Random Forest)
Milestones

- Only one exercise sheet, but:
- Divided into milestones with deadlines
- Milestones are presented by at least one group member

Milestone presentation consists of:
- Steps taken
- Problems encountered (and their solution if available)
- Assessment of quality (if possible)
- Next steps planned
- No more than 3 min
Typical steps for ML development

- Data extraction
- Redundancy reduction (and fold splitting)
- Feature extraction
- Feature selection (feature optimization)
- Cross-training (parameter optimization)
- Evaluation (holdout set)
- Evaluation (competing methods)
WEKA

• Machine Learning (ML) workbench
• Includes implementations of various ML algorithms
 • Neural networks
 • Support vector machines
 • Random forests
 • Linear regression
 • Bayesian networks
• We suggest to use WEKA unless you are already familiar with specific ML implementations
WEKA

Some suggestions:

• Familiarize yourself with WEKA
• Read the tutorial on their webpage
• Download WEKA to your local machine
• Use their data examples and play around in the GUI

• http://www.cs.waikato.ac.nz/ml/index.html
The data

• Several features with different biological background (evolutionary, biochemical, annotation..)
• Features come in a window around the central position
• Each line corresponds to one position in the protein
• The first feature corresponds to the protein name and residue number
• The last feature is the target class (+) means transmembrane and (-) not in membrane
The data

@ATTRIBUTE swiss_annotation_available {0,1}
@ATTRIBUTE pssm_diff NUMERIC
@ATTRIBUTE pssm_sign {0,1}
@ATTRIBUTE perc_diff NUMERIC
@ATTRIBUTE perc_sign {0,1}
@ATTRIBUTE sift_tolerated {0,1}
@ATTRIBUTE sift_deleterious {0,1}
@ATTRIBUTE sift_score NUMERIC
@ATTRIBUTE psic_diff NUMERIC
@ATTRIBUTE psic_sign {0,1}
@ATTRIBUTE pfam_diff NUMERIC
@ATTRIBUTE pfam_sign {0,1}
@ATTRIBUTE pfam_indomain {0,1}
@ATTRIBUTE pfam_annotated {0,1}
@ATTRIBUTE class {+-}
Your task

• The data is (largely) prepared
• You will be assigned a specific ML method
• Select the minimal set of Features that provides good performance
• Cross-train a good model (and evaluate on test sets)
• Provide a standalone, command-line executable
• Evaluate the method of one other group against the holdout set (Cooperate with the others)
• Give a final presentation – show the performance of your tool
Milestone 1 – method development

- Split the big data file into 3 subsets
- Use PSSM and hydrophobicity as base features – feel free to add others to increase performance (don’t use all/too many – use the smallest possible set)
- Window size between 17-25 residues (typical size of TM helix;) Select a good window length
- Cross-train and optimize parameters of your model
- Visualize the performance of your method
Next meeting will be

- 16.05 – Group A
- 23.05 – Group B

(Presentation of Milestone 1)