Review: protein secondary structure prediction continues to rise

TitleReview: protein secondary structure prediction continues to rise
Publication TypeJournal Article
Year of Publication2001
AuthorsRost, B
JournalJ Struct Biol
Volume134
Pagination204-18
KeywordsChemical Models, Computational Biology/methods/statistics & numerical data Models, Molecular *Protein Structure, Secondary Proteins/*chemistry Software/statistics & numerical data
Abstract

Methods predicting protein secondary structure improved substantially in the 1990s through the use of evolutionary information taken from the divergence of proteins in the same structural family. Recently, the evolutionary information resulting from improved searches and larger databases has again boosted prediction accuracy by more than four percentage points to its current height of around 76% of all residues predicted correctly in one of the three states, helix, strand, and other. The past year also brought successful new concepts to the field. These new methods may be particularly interesting in light of the improvements achieved through simple combining of existing methods. Divergent evolutionary profiles contain enough information not only to substantially improve prediction accuracy, but also to correctly predict long stretches of identical residues observed in alternative secondary structure states depending on nonlocal conditions. An example is a method automatically identifying structural switches and thus finding a remarkable connection between predicted secondary structure and aspects of function. Secondary structure predictions are increasingly becoming the work horse for numerous methods aimed at predicting protein structure and function. Is the recent increase in accuracy significant enough to make predictions even more useful? Because the recent improvement yields a better prediction of segments, and in particular of beta strands, I believe the answer is affirmative. What is the limit of prediction accuracy? We shall see.